
Latent Class Modelling 

What is Latent Class Modelling? 
Latent Class Modelling (LCM) comprises a set of techniques aimed to model situations where different 
subgroups (or, more generally, classes) of entities (for example organizations or individuals) are present in 
data and group membership is not directly observable, but has an impact on phenomena of interest. 
Depending on whether the observable variables are categorical or continuous, the models are labeled as 
Latent Class Analysis (LCA) or the Latent Profile Analysis (LPA); in both cases, differences between classes are 
bases on differences in means. Conversely, in Finite Mixture Models (FMM) classes affect the relationships 
between independent and dependent variables in a regression model. LCA is very close to factor analysis, 
but the underlying unobserved variables are not continuous but categorical. 

Table 1. Name of different kinds of latent variable models (Oberski 2016) 

 Models for distributions of observed variables Regression models (independent > dependent) 

 Latent Latent 

 Continuous Discrete Continuous Discrete 

Observed     

Continuous Factor Analysis Latent Profile 
Analysis 

Random effects (RE) Regression mixture 

Discrete Item response theory Latent Class 
Analysis 

Logistic RE Logistic regression 
mixture 

Heterogeneity 
Latent Class Modelling permits to handle with unobservable heterogeneity. Heterogeneity is a crucial 
problem because it strongly affects the quality of any estimation, which could be imprecise or biased. 

Heterogeneity mainly relies on differences between observation units (HEIs, people, organization) in terms 
of individual characteristics, organization, country factors or time. At the same time, heterogeneity is also an 
interesting source of information about the population investigated, and it is thus of a certain interest to 
model it. 

Most social research studies, whether quantitative or qualitative, usually deal explicitly (or at least implicitly) 
with causal relationships between variables; in other words, how one or more circumstances or factors 
(‘explanatory variables’) cause one or more outcomes (‘dependent variables’). In could happen that, in some 
cases, the causal relationship between two variables is due to a third, not directly observable, one (latent 
variable). In other words, observed correlations between variables may be due to each observed measure 
sharing an unobserved component (c). The value of the latent variable can then be inferred from measurable 
variables.  

Figure 1. Relations between variables 

 



Examples 
As an example, you could be interested on investigate how scientists’ innovativeness (not directly 
observable), combined with continuous or categorical exogenous covariates (ex: age, sex, citizenship, Ph.d. 
affiliation, etc..) affects outcomes, such as career progress, research network, citation score index, etc.. You 
might for example expect that age has a lower impact on citations when innovativeness is low than when it 
is high. 
A Finite Mixture Model would classify individuals in groups by (latent) level of innovativeness and yield 
coefficients of covariates (for example age) by group. The model would therefore identify groups in the 
population that behave differently. 

How it works? 
Basically, latent class analysis: 

- Fits the probabilities of which observations belongs to which class (probability class membership); this 
relationships can be also modeled based on some exogenous variables. 

- Describes the relationship between the classes and the observed variables. 

The estimation of Latent Class parameters used the maximum likelihood approach. Since latent class 
membership is not observable, the likelihood function is complex; then an expectation-maximization (EM) 
algorithm will be run. From a practical point of view, estimation with EM algorithm starts with a random split 
of the individuals considered into a defined number of classes then, based on an improvement criterion, 
reclassified until the best classification is found. It can be repeated using different starting values. 

The model has to be run with a fixed number of classes, but fit statistics such as Maximum Likelihood, AIC 
and BIC can be used to select the optimal number of classes. 

The model convergence and robustness request samples with high number of observations and high degree 
of freedom, as the number of parameters grows rapidly with the number of classes. Hence, a parsimonious 
specification of the model is important. Another important point is the identification of highly 
“discriminative” variables at the base of the creation of classes and subgroups. The latter is also relevant for 
classes’ interpretability. 
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Annex. Stata scripts 

A useful software package that can be used for the estimation is GSEM (Generalized Structural Equation 
Model Estimation) in STATA. Scripts that can be used are structured as follows: 

Latent Profile Analysis 

The basic Stata command syntax for this type of model is: 

gsem(y1 y2 y3 y4 <cons) (C<z1, z2, …), regress lclass(C 2) 

This fits a latent class model with one categorical latent variable, C, that has two classes. Both the name of 
the latent variable and the number of classes is specified in the lclass() option. 

This basic latent class model can be extended in many ways. 

 We can specify that C has different numbers of latent classes. 

 We are not limited to having observed variables that are categorical. When variables are 
continuous we have a latent profile analysis (LPA). 

 We can include predictors of C—predictors of the probabilities of being in the different classes. 

 We can include more than one categorical latent variable. 

An example of LPA (Lepori et al. 2018 “The heterogeneity of European Higher Education Institutions. A 
typological approach”): 

gsem (lnstaff research_intensity education_intensity citationsstaff masterorientation 
herfindahlindexstudentsisced57 ssh patentintensity <- _cons) (C <- i.phdawarding i.legalstatus), regress 
lclass(C 8) lcinvariant(none) nonrtolerance startvalues(randomid, draws(15) seed(5)) 

with: 

covariates:  lnstaff research_intensity education_intensity citationsstaff masterorientation 
herfindahlindexstudentsisced57 ssh patentintensity  

C <- i.phdawarding i.legalstatus: classes are defined with reference to the presence or not of a research 
mandate (phdawarding) and to the public/private legal status (legalstatus) 

lclass(C 8): this option specifies that the name of our categorical latent variable is C and that it has eight 
latent classes 

lcinvariant(none): it allows all parameters to vary across classes 

nonrtolerance: is a maximize option 

startvalues(randomid, draws(15) seed(5): this option requests that starting values be computed using 
random class assignments. In this option, draws(5) specifies that five random draws be taken and that the 
one with the best log likelihood after the EM iterations be selected. 
 
Finite Mixture Model 

Here we focus on finite mixture regression models in which you can fit any regression model allowed by 
gsem and estimate the parameters of that model separately for each latent class. For a linear regression of 
y on x1 and x2, the command syntax for a two-class model is: 
 
(y <- x1 x2), lclass(C 2) 
 
The intercept and the coefficients on x1 and x2 will be estimated separately for the two classes. 
In addition, we estimate the probability of being in each class. If we have a variable z that predicts 
class membership, the command syntax becomes: 
 
(y <- x1 x2) (C <- z), lclass(C 2) 



An example of FMM (Lepori Antonioli 2018, “Funding Policies in Higher Education, their Interaction with 
Organizational Heterogeneity and the Implications for Public Management”) 

gsem (ln_budget <- norm_gdp i.universityhospital lnstudent research_volume_1 

herfindahlindexstudentsisced57, regress) ( ln_third_party ln_student_fees <- norm_gdp i.universityhospital 

lnstudent research_volume_1 herfindahlindexstudentsisced57, regress) (C <- i.dummyphd i.dummylegst), 

regress lclass(C 6) lcinvariant(coef) nonrtolerance  

with:  

dependent variable: ln_budget, ln_third_party ln_student_fees 

covariates: norm_gdp i.universityhospital lnstudent research_volume_1 herfindahlindexstudentsisced57 

C <- i.dummyphd i.dummylegst: classes are defined with reference to the presence or not of a research 
mandate (dummyphd) and to the public/private legal status (dummylegst) 

lcinvariant(coef): it states all coefficients constrained to be equal across classes. 

lclass(C 6): this option specifies that the name of our categorical latent variable is C and that it has six latent 
classes 

nonrtolerance: is a maximize option. 

 


